
110 Spécial RecheRche 2008/2009 ● Plein sud

In 1997, for the first time ever, a computer beat Garry Kasparov, the world

chess champion. In the game of Go, on the other hand, humans retain the

upper hand. Go is more complex than chess, with the number of different

games possible exceeding 10600 greater than the number of particles in

the Universe. Go is therefore a remarkable school for learning strategy.

Computers cannot easily compete with the best humans, but new

algorithms are changing all that.

* Equipe TAO, LRI, ** LRI, *** Projet Willow, Certis, Enpc, **** Inria Futurs, équipe Sequel,
***** LIG, UMR 5217, Université de Grenoble, Ensimag, ****** National University Of Tainan, Taiwan
******* University of Maastricht

Jean-Yves audibert***, sébastien bubeck****, vincent danJean*****,
sYlvain GellY*, thomas hérault**, Jean-baptiste hoock*, chanG-shinG lee******,

rémi munos****, Julien pérez*, arpad rimmel*, marc schoenauer*, michèle sebaG*,
olivier teYtaud*, mei-hui WanG******, Yizao WanG*

GOthique

©
 a

n
n

ic
k

 D
.

Plein sud ● Spécial RecheRche 2008/2009 111

The game of Go (inset 1), is little known in France
but very popular in large countries such as
China, Japan and Korea. It presents a real
challenge to computer scientists. The number

of possible combinations is much greater than for
chess, and human expertise is extremely difficult to
emulate in effective computer programs. This game
thus requires a form of intelligence open to humans,
but, until recently, largely inaccessible to computers.
The ancient game of Go provides an excellent stan-
dard for evaluating progress in artificial intelligence.
Since 2006, Bandit-Based Monte-Carlo* Planning
(BBMCP) technology, developed from fundamental
research into “bandit problems” and exploration/
exploitation dilemmas, has revolutionised planning.
During the Go tournament organised in Paris in
March 2008 by the French Go Federation (FFG),
the artificial intelligence engine MoGo, the fruit
of collaboration between our TAO team from LRI
and groups from INRIA, the CNRS and the Ecole
Polytechnique (CMAP), scored the first officially
validated victory over a human Go master. MoGo is
a computer program that makes use of BBMCP to
play Go. The MoGo project was built on expertise in
parallel computing and makes use of a classical form
of parallel computing involving “clusters” supplied
by the Grid’5000 project and Bull. One of the key
features of MoGo is its ability to meet the challenge
posed by the game of Go using very little specific
information about the game. Indeed, many of its
developers know very little about the game beyond
its basic rules. MoGo has provided an opportunity
to develop general methods not specific to Go and,
thus, to evaluate and understand the power and
limitations of Monte-Carlo planning. MoGo has
thus developed from a combination of basic, experi-
mental and applied research. The potential domain
of application of these methods is vast, and includes
problems with too many parameters to be dealt with
by classical techniques. The planning of energy pro-
duction is a typical example. The optimal reconcilia-
tion of highly diverse, but limited resources perfectly
illustrates such “multiple dimension” problems.

Just like the casino

One of the key elements of MoGo is the “one-armed
bandit” problem, named after the slot machines in
casinos. Imagine that you are faced with two slot
machines, one on the left and one on the right. Each
machine provides a particular probability of win-
ning, but you have no prior knowledge of the proba-
bility of winning with either machine. You play the
machine on the right and you win. You then play the
machine on the left and you lose. You then go back
to the machine on the right, but this time you lose. So,
you have one win in two tries for the machine on the
right and a single unsuccessful try for the machine
on the left. This leaves you with a dilemma : is it best
to act on the information you already have (play

the machine on the right, which has a better success
rate so far), or is it best to explore and acquire new
information (play the machine on the left, with an
outcome that is less well known) ? This dilemma, the
so-called “bandit problem”, requires you to find a
strategy that maximises gain by finding a judicious
balance between exploitation and exploration. This
problem can be generalised in several ways : with
more than two machines, the gains are no longer
binary (win or lose) but quantitative (how much can
I win ?) depending on the number of times an arbi-
trary arm is pulled. Many exploitation/exploration
algorithms have been developed to maximise the
gain in different situations.
An algorithm is satisfactory if the optimal machine
(the one giving the highest gains) is the machine
most frequently played. As the ability of each
machine to provide gains must be assessed by testing
(i.e. by playing the machine), the key element in the
algorithm is playing the least optimal machines only
rarely, typically just often enough to determine that
the machine is not optimal. The problem may also
be limited in time : for example, it may be possible to
play only 100,000 times. In such cases, an asymptotic
analysis of the exploration/exploitation dilemma,
based on playing an unlimited number of times, is
not optimal. The algorithm can be improved, by
taking into consideration the limitations on playing
time.
The goal is thus to bias the algorithm so that it tends
to play certain machines, presumed to provide the
greatest gains, more frequently. However, it is far
from trivial in this case to guarantee that the algo-
rithm will always find the best solution, even assu-
ming that sufficient calculating power is available.
The bias must be sufficiently strong to work pro-
perly, but sufficiently weak to ensure that it can still
find the optimal solution even if its initial assessment
of the machines is wrong.

1 the Game of Go

The game of Go is played by two people, who take turns
placing black or white stones on a board, the goban, on
which a grid is engraved. The grid consists of 19 horizon-
tal and 19 vertical lines, resulting in 361 intersections.
a smaller number of lines may be used, most often
13x13 or 9x9 for rapid games or for learning the rules
of the game. The player with the black stones goes first.
Stones surrounded by the opponent’s stones are removed
from the board, and the player whose stones cover the
most territory on the board at the end of the game is the
winner. The rules are very simple; but the game has an
immense number of moves and can prove addictive.

112 Spécial RecheRche 2008/2009 ● Plein sud

the tree of possible moves
In 2006, several European publications substantially
increased the range of bandit problems by extending
them to problems that can be represented in the form
of a tree. The tree symbolises all possible positions
and every available path to reach them. Imagine a
situation in a two-player game in which you have to
choose your next move. You draw a tree, the root of
which represents the current situation. The number
of branches corresponds to the number of possible
moves. Each branch leads to a node corresponding
to a new position. Each of these nodes leads to a
new set of branches corresponding to new moves
in response to your opponent’s moves, and so on. If
you could follow each branch until the final position
in the game — win or loss — was reached, then you
could choose the best move with certainty.

Unfortunately, your calculating power is limited and
insufficient to develop a complete tree. You there-
fore need to limit the depth of construction, but you
don’t necessarily have to use the same depth for all
moves. You can stop searching along certain bran-
ches right from the first move if they are clearly bad,
whilst pursuing the most promising branches for up
to 30 moves. But how do you decide which nodes to
develop ? That is where the bandit technique comes
in, making it possible to find a compromise between
exploring and exploiting. Simulations of games are
carried out, beginning at an individual node and
continuing until completion of the game. Such simu-
lations are carried out for each node. If a simulated
game ends in victory, then a “win” is associated with
the node from which that game began. If the simu-
lated game ends in defeat, a “loss” is associated with
the node. This results in a situation similar to that
for one-armed bandits in casinos, and we can use the
same type of algorithm to optimise the search for a
favourable branch : nodes associated with a higher
frequency of victories are developed further (exploi-
ted), but nodes that have been less well searched
are also considered (exploration) (figure1). A large
number of simulations are carried out over the space
of, say, one minute, and the most promising move is
actually played.

Optimizing the power of
the algorithm
The classical solution to the problem of program
performance being limited by the computing power
available would be to run the program simulta-
neously on several computers in parallel. This is

/ figure 1

The exploration-exploitation compromise
each node correspondes to the ratio a/b, where b is the number of simulations passing through the node and a is the number
of simulations resulting in a win. either the branch leading to the maximum number of victories (left) or the least explored
branch (right) may be selected. This is what is meant by the “exploration/exploitation compromise”, otherwise known as a
“bandit problem”.

2 acknowledgements

MoGo would like to thank Jean-Yves audibert, eric
caudal, Bertrand chardon, louis chatriot, Rémi coulom,
Vincent Danjean and MOaiS, Frédéric Donzet, alain
Facélina, David Fotland, Sylvain Gelly, Jean-Baptiste
hoock, Bernard helmstetter, Thomas hérault, Marc
Jégou, Jean-François Méhaut, Rémi Munos, Vincent
Néri, Julien perez, arpad Rimmel, David Silver, the team
at Tao, Olivier Teytaud, clément Trung, Yizao Wang,
the mailing-list computer-go, KGS, cgos, linux and
Récitsproque.

6/10

0/10/1

0/1 1/1

4/5

0/2

1/1 2/3

5/7

4/5

6/10

0/10/1

0/1 1/1

4/5

0/2

1/1

5/7

2/3

4/5

Plein sud ● Spécial RecheRche 2008/2009 113

the principle behind parallel computing*. The tree
approach used by BBMCP (an “in depth-first scan”)
is difficult to adapt to a parallel computing system.
Nevertheless, using a few tricks and approximations,
we have been able to make use of the two main
types of parallel computing: shared memory and
the passing of messages. In a parallel system based
on shared memory, several computers, known as
cores, read and write in the same memory. There is
no need for explicit communication (each unit sees
the entire memory), but these systems become phy-
sically difficult to construct once they include more
than about ten computing units. In a parallel system
based on the passing of messages, several computers,
or computing nodes, work together, but each uses its
own memory. Messages are passed between units for
the sharing of information. These messages must be
explicitly written in the programs, complicating the
programming process. Nowadays, it is easy to ima-
gine having thousands of computing units working
together. Parallel computing with shared memory
naturally leads to deeper reasoning (even to a dee-
per game), whereas parallel computing based on the
exchange of messages naturally leads to broader
reasoning (more moves considered). Intriguingly, Go
players often describe the different styles of game
playing in these very terms.

Our planning algorithm gradually identifies nodes
corresponding to possible future positions and sto-
res them in memory. In shared memory systems, the
parallel approach is thus quite natural : each core
undertakes its own simulations and the results are
used to enrich the same memory. However, many
obstacles remain. If several cores write to the same
memory space simultaneously, it is hardly surprising
that the results are far from ideal! There is therefore
a need to ensure that no particular core is faced
with a memory space the contents of which change
unexpectedly due to modification by another core.
Certain segments of the code must therefore be
“protected” by serialisation, that is, by prohibiting
the execution of certain operations in parallel. It is
also important to avoid prevent the cores slowing
each other down because they have arrived at the
same memory space or at the same time in the seria-
lised parts of the program. In other words, the real
difficulty is minimising serialisation: too little and
the program may function erroneously, too much
and the program will not make the best use of the
available computing power.
When memory is not shared, how do you “paral-
lelise” the algorithm ? Sending messages between
machines is highly time-consuming, whereas simu-
lations are very rapid. A single computing core may
execute 15,000 operations per second. If we are not
careful, communication time may rapidly increase
to several orders of magnitude above the calcula-
tion time. The trick involves not communicating the
result of each calculation, but instead bundling the
results of multiple calculations together through

/ figure 2

The position indicated with a circle is considered by MoGo
to be a priority move, because it occurs twice on the third
line and corresponds to a “wall” pattern. The triangles
correspond to moves considered by MoGo to be less
interesting : the triangle at a4, because it is an edge; and
the triangle at F2, because it corresponds to an “empty
triangle” motif. Finally, the G4 square is more complicated.
This would normally be considered a bad move, because it
corresponds to an empty triangle pattern. however, it occurs
on the third line, which is considered to be good. This move
is therefore generally considered to be a weak move.

statistics. Each computer constructs its own tree of
possible positions and then, 20 times per second, for
example, all the computers combine their results.
This operation can be applied over a large scale,
because communication time increases little with
increasing number of computers. Indeed, it increases
as a logarithm of the number of machines.

Grid’5000

One of the major problems is the need to access an
effective set of computers that are simultaneously
multinode (several computers sending messages
efficiently to each other) and multicore (several
computing cores sharing memory relating to each
node). We achieve this by making use of the resour-
ces provided by the Grid’5000 project (Figure 2), an
experimental computing grid* linking together nine
locations in France, including Université Paris-Sud
at Orsay, and providing access to a network of thou-
sands of computing units. Grid’5000 supplies a large
range of resources to computer scientists developing
new algorithms for computing grids and parallel
computers or studying the behavior of these machi-
nes. In particular, Grid’5000 includes a machine in
Grenoble with 16 computing cores, a network of 46
eight-core machines in Lille, and a large number of
clusters used in the many experiments required to
improve the performance of MoGo.

A statistical simulation
method with a pinch of
human expertise
The BBMCP chooses the moves to explore as a func-
tion of the exploration/exploitation dilemma. But
what should you do when you happen upon an enti-

114 Spécial RecheRche 2008/2009 ● Plein sud

And the computer wins !
During the tournament in Paris in 2008, RécitSproque
and the French Go Federation (FFG) organised the
IAGO challenge : a game between a professional Go
player and a computer on a 9x9 board (goban). The
9x9 Go game is easier for computers than the tradi-
tional 19x19 grid, but humans are still largely supe-
rior (the number of possible moves is much greater
than in a game of chess). MoGo went up against
Catalin Taranu, professional 5th Dan master and
winner of the 2008 Shusaku cup. The series consisted
of three matches on the 9x9 board on March 22nd
and an exhibition game played on the 19x19 board
on March 23rd. The first match was unfortunately
disrupted by a technical problem. The cluster made
available to MoGo by Bull, on which the program
performs best, had to be replaced by a standard
computer. MoGo lost and Catalin Taranu conside-
red it to be an easy win. During the second game,
the cluster was working and MoGo won (figure 4).
Catalin Taranu admitted that he had made some
major blunders that were astutely exploited by
MoGo. The third game took place without techni-
cal incident, and Catalin was on top form and beat
MoGo. Finally, some of the players wanted to try
play MoGo outside of tournament play, and MoGo
went unbeaten in these exhibition games against
highly ranked opponents.
MoGo also played an exhibition game on the 19x19
board against Catalin, but the human won, despite
a nine-stone handicap. There was a problem with
the connection to the Bull cluster from the start of
the match, and so a standard computer was used
for part of the match, until it could be replaced by
the Bull cluster. Catalin said that MoGo played at a
level close to a Dan player and made some brilliant
moves. MoGo finally lost because of a blunder at the
end of the game, but the game nonetheless lasted a
long time. We thank the French Go Federation and
RécitSproque for providing us with an opportunity
to demonstrate our program.

Next challenge in Portland
and at the National university
of tainan (taiwan)
MoGo was then invited to play in August 2008,
against Kim Myungwang, 8th Dan professional from
the formidable Korean Federation, with a nine-stone
handicap. Following several defeats in speed games,
MoGo won a game in standard time, notably after
a beautiful local victory in the bottom right corner
(figure 6). Emboldened by these successes at the uni-
versity, MoGo went on to play against other compu-
ters in Taiwan and other human players. Although
MoGo again lost against a leading player, despite a
seven-stone handicap, MoGo won for the first time
without a handicap against a 4th Dan player from the
Taiwanese Go Federation (Figure 7).

rely unprecedented situation : which moves should
be given priority for exploration ? A simple solution
would be to select a move at random. This is the
principle behind the Monte-Carlo method. However,
this selection at random does not mean each possible
move has the same probability. A distribution of pro-
babilities judiciously selected on the basis of specific
knowledge about the problem, in this case the game
of Go, can be employed. This principle, long studied
at the Universities of Paris 5 and 8, remains elusive.
Clearly, the use of the Monte-Carlo algorithm that
makes the best moves does not necessarily result
in the best program. It is important to maintain a
certain diversity in strategies, and it is better to play
poorly but robustly and consistently, than to play
well but with fatal weaknesses at times. Put another
way, it is better to anticipate every reasonable move
rather than to play excellently 90% of the time but
get it badly wrong the remaining 10% of the time.

BBMCP has rapidly become established as an
excellent approach to Go, despite including very
little expert knowledge of the game. The best pro-
grams, however, now include some human expertise.
In particular (Figure 3), opponents of MoGo have
discovered weaknesses in the program concerning
certain positions called “Nakade”. For a long time,
MoGo played with insufficiently varied simulations,
lacking moves of this type. It was only during games
against human players that these weaknesses were
eventually discovered and corrected. Go players
have also suggested that MoGo should focus more
on some moves and less on others : avoiding moves
known as “empty triangles” and instead focusing
on moves known as “walls”. Finally, like human
players, MoGo now studies the Tsumego problems
s: positions in which it is known that one and only
one move can win the game. Biasing the method of
constructing trees until the right decision is one way
of taking Tsumego problems into consideration.

/ figure 3

Final position in the game won by MoGo against catalin
Taranu (5th Dan professional) on a 9x9 board, during the iaGO
challenge in 2008. MoGo played white.

Plein sud ● Spécial RecheRche 2008/2009 115

A promising future
Let us begin by considering what Go has brought to
BBMCP and the amazing opportunity it has provided
for demonstrating these alternative planning techni-
ques for multiple dimensions. Go provides a suita-
ble challenge : nobody can doubt the performance
of BBMCP after its achievements in this domain.
Opportunities for applications in other domains are
scarce but rapidly increasing, and the example of this
application for Go will play a major role in the deve-
lopment of other applications, by providing proof of
principle that BBMCP can work through its clear vic-
tory over classical methods in the challenging game of
Go. This work on Go has also provided an excellent
opportunity to visualise event in a BBMCP program.
The tree constructed by BBMCP reveals the pitfalls
to be avoided: loss of time due to a large number of
aberrant simulations or, conversely, loss of diversity.
Finally, this work has favoured the development of
parallel computing. The idea of running BBMCP
algorithms in parallel did not occur to anyone until
we realised the extent to which this could increase the
efficacy of this method. Few studies have considered
the use of other planning methods in parallel systems,
but we strongly believe that this technology could be
generalised. In particular, the use of parallel systems
involving message transfer, although not necessarily
intuitive, could easily be applied to situations other
than Go, and even to situations beyond BBMCP.
Generalised approaches (heuristics) not specific to
Go are also possible. The notion of studying permuta-
tions of a simulation, for example, which was used for
each simulation carried out in MoGo, could potenti-
ally be applied to other domains, such as robotics.
Other perspectives for the future, such as the automa-
tic parameterisation of MoGo, should also be mentio-
ned. MoGo uses a large number of constants that are
difficult to select. The parameters are optimised, but
a huge amount of computing time is required. MoGo
could learn by playing games against itself or others
in the future, but how can it learn from its errors
without human intervention ? Humans know how to
estimate their confidence in a move, something that
MoGo does not yet know how to do. When in doubt,
human players may devote half the time in a match
to a single decisive move, but MoGo spends about
the same amount of time on each move. How can the
confidence in a decision be assessed and, if necessary,
how can computing power be increased in situations
of doubt ? Beyond Go, a few potential applications
already exist, particularly in the domain of resource
management. Still others are under consideration. We
strongly believe that this technology has a number
of advantages (efficient parallelisation, compatibility
with problems involving many dimensions, the pos-
siblity of introducing human experience) and has a
promising future. Go is simply the first step ! n

/ figure 4

MoGo played black and won.
Kim, champion of the formidable US Open 2 days after his
defeat by MoGo, later played with a 7-stone handicap and won.

Computing grid :
A computing grid makes distributed calculations possible : it
uses the computing power (CPUs, memory, etc.) of thousands
of computers to give the impression of a super powerful virtual
computer. This system can thus solve major problems that would
take too long to solve in a “classical” environment.

Monte-Carlo Method :
Methods for calculating a numerical value through procedures
dependent on chance (i.e. probabilistic techniques) are called
Monte-Carlo methods. The name was inspired by the games of
chance played in the casinos of Monte Carlo.

Parallelisation :
Parallelisation involves the execution of independent tasks
simultaneously to minimise the time required to complete all the
tasks. In computing, parallelisation often involves breaking down
tasks into atomic operations, executed independently of each
other. Parallelisation may be achieved on a single computer or by
distributing tasks between different computers.

Glossary

/ PHOTO

professor Dong (5th Dan), assessing MoGo’s rank. MoGo won all
four games against professor Dong, who played with a 4-stone
handicap.

